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Be forewarned that while I think I have some pretty numerical results, the analytical side is still a bit
rough. For instance I would love to be able to prove the concavity of the profit equations, perhaps another
day. Also this entire set of notes is a rough draft, for what I’m unsure. A Java implementation of the
profit optimization algorithm can be found here https://github.com/sophist0/opt_profit

Two Good Model

Assume we have two goods labeled G1 and G2 where G2 is a sequel to G1. For instance G1 is Home Alone
and G2 is Home Alone 2. These have a potential audience A. The fraction of the audience that wants to
good G1 first is f0,1. The faction that wants to see movie M2 first is f0,2. The fraction of viewers that see
G1 first and then want to see G2 is f1,2 and the fraction of viewers that see G2 first and then want see G1

is f2,1. These fractions are subject to the following restriction 0 ≤ fi,j ≤ 1 for i ∈ [0, 1, 2], j ∈ [1, 2], and
i 6= j. Additionally no sum of fractions leaving an audience node may be greater than 1 which in this case
implies that

0 ≤ f0,1 + f0,2 ≤ 1 (1)

or generally

0 ≤
∑
j

fi,j ≤ 1 for all i (2)

These fractions fi,j are often empirically available to online marketplaces such as YouTube Movies.

The possible orders in which the audience can purchase G1 and G2 can be represented as a graph.
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Figure 1: Two Good Purchase Order Model

To this model we can add the price pi of each good. But before doing so lets normalize the min and max
pricing of the goods such that at pi = 0 everyone who wants good Gi purchases it and at pi = 1 no one
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who wants good Gi purchases it. As with the fractions fi,j the actual min and max prices of a good can
be estimated empirically. At this point I need to make and important clarification. I assume the min and
max prices of all goods are the same. This makes sense in the case of two movies, but is harder to justify
if the goods in question were a pound of coffee and a pound of sugar.

Define pi as having domain pj ∈ [0, 1]. Finally I assume that every member of the audience is subject to
the same linear price sensitivity function sj = (1− pj) so if fi,j = 1 for all i at pj = 1/2 half the members
of the audience who want to purchase good Gj do so. I have no reason to think that this price sensitivity
function reflects actual consumer behavior, I chose it for its simplicity. The resulting two good pricing
model is given below,
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Figure 2: Two Good Pricing Model

If we do not assume that all goods have the same min and max price I think the sensitivity function could
be formulated as

si = 1− pi − p−i
p+
i − p−i

(3)

where p+
i is the max price of good i and p−i the min price. But I have not worked out this case.

The model in the figure above can be collapsed to the following graph,
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Figure 3: Collapsed Two Good Pricing Model

Two Good Profit Equation
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If the audience size is N its clear from the model above that the profit earned by both goods can be
computed as

profit := f(p1, p2) (4)

= N [(f0,1s1 + f0,2s2f2,1s1)p1 + (f0,2s2 + f0,1s1f1,2s2)p2] (5)

∝ (f0,1s1 + f0,2s2f2,1s1)p1 + (f0,2s2 + f0,1s1f1,2s2)p2 (6)

= [(f0,1(1− p1) + f0,2f2,1(1− p1)(1− p2)]p1 + [(f0,2(1− p2) + f0,1f1,3(1− p1)(1− p2))]p2 (7)

= (p1 − p2
1)(f0,1 + f0,2f2,1(1− p2)) + (p2 − p2

2)(f0,2 + f0,1f1,2(1− p1)) (8)

Lets simplify the notation using the following mapping.

p1 → x, p2 → y, f0,1 → a, f0,2 → b, f0,1f1,2 → c, f0,2f2,1 → d (9)

Under this mapping the equation simplifies to

g(x, y) =
f(x, y)

N
= (x− x2)(a+ d(1− y)) + (y − y2)(b+ c(1− x)) (10)

Taking the first and second partial derivates of g(x, y) gives

∂

∂x
g(x, y) = (1− 2x)(a+ d(1− y))− c(y − y2) (11)

∂

∂y
g(x, y) = (1− 2y)(b+ c(1− x))− d(x− x2) (12)

∂2

∂x2
g(x, y) = −2(a+ d(1− y)) (13)

∂2

∂y2
g(x, y) = −2(a+ d(1− x)) (14)

∂2

∂x∂y
g(x, y) =

∂2

∂y∂x
g(x, y) = 2d

(
x− 1

2

)
− 2c

(
y − 1

2

)
(15)

(16)

Therefore the Hessian matrix of g(x, y) is

Hg(x, y) =

[
∂2

∂x2
∂2

∂x∂y
∂2

∂y∂x
∂2

∂y2

]
=

[
−2[a+ d(1− y)] 2[d(x− 1/2)− c(y − 1/2)]

2[d(x− 1/2)− c(y − 1/2)] −2[b+ c(1− x)]

]
(17)

Results for the Two Good Profit Equation

The squared terms in the first order partial derivatives of g(x, y) make finding a closed form solution for
the critical points of g(x, y) difficult in terms of arbitrary parameterizations of f0,1, f0,2, f1,2, and f2,1.
Therefore before solving for these points numerically I set the values of these parameters as follows,

f0,1 =
9

10
, f0,2 =

1

10
, f1,2 =

3

4
, f2,1 =

1

4
(18)

Practically these fractions could be found empirically by setting p1 = 0 and p2 = 0. Using these values
under the mapping defined above gives

a =
9

10
, b =

1

10
, c =

27

40
, d =

1

40
(19)

Plugging these values into the partial derivatives of g(x, y) gives

∂

∂x
g(x, y) = (1− 2x)

(
9

10
+

1

40
(1− y)

)
− 27

40
(y − y2) = 0 (20)

∂

∂y
g(x, y) = (1− 2y)

(
1

10
+

27

40
(1− x)

)
− 1

40
(x− x2) = 0 (21)
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Solving this system of equations with Sympy’s nsolve and initial points x, y = 1/2, I found the critical
point for g(x, y) is x∗ = 0.408 and y∗ = 0.494 rounding to the thousandths place.

Plugging the values into the Hessian matrix we can determine if this solution is a saddle point or a local
maxima using the partial derivative test.

Hg(x∗, y∗) =

[
−1.8253 0.0035
0.0035 −0.9992

]
(22)

The computing eigenvalues of Hg(x∗, y∗) with numpy gives λ1 = −1.8253 and λ2 = −0.9992. Since all
the eigenvalues of the Hessian are negative, the Hessian is a negative definite matrix. Therefore g(x, y)
achieves a local maxima at point (0.408, 0.494).

Is this solution better than if we fixed p1 = p2 in the Two Good Pricing Model above? If we set x = y,
g(x, y) reduces to

g(x) = x3(c+ d)− x2(a+ b+ 2(c+ d)) + x(a+ b+ c+ d) (23)

and the first and second derivatives of g(x) are

d

dx
g(x) = 3x2(c+ d)− 2x(a+ b+ 2(c+ d)) + (a+ b+ c+ d) (24)

d2

dx2
g(x) = 6x(c+ d)− 2(a+ b+ 2(c+ d)) (25)

Setting the first derivative of g(x) to zero and solving for the two critical points gives x∗ ∈ 0.438, 1.848.
Since x := p1 by definition 0 ≤ x < 1 and it follows that x∗ = 0.438.
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Figure 4: Contour Plot of g(x, y)

Now looking at the second derivative of g(x) at x∗ we find that

d2

dx2
g(x∗) = −0.560 < 0 (26)

Therefore g(x∗) is a local maxima by the second derivative test and the only maxima in the domain of x.
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What is the difference in profit achieved using g(x, y) vs g(x) to optimize pricing? Well

g(x∗) = 0.34299 (27)

g(x∗, y∗) = 0.34532 (28)

g(x∗, y∗)

g(x∗)
= 1.00678 (29)

or about a 0.68% increase as a result of price optimizing via g(x, y). But recall this is the normalized profit
per potential audience member. If the maximum price anyone is willing to pay for G1 and G2 is p+ = $20
while the minimum is p− = $0, this sets p1 = $8.16, p2 = $9.88 under g(x, y) and p1 = p2 = $8.76 under
g(x). Now if the audience size is 108 the difference in profit using g(x, y) to set prices vs g(x) is about
$13, 560, 000 which is not trivial.

n Good Model

From the small example given in Fig. 2 its clear that to compute the profit over a set of goods purchased in
sequence requires looking at every permutation of that sequence. The figure below gives a tree representing
these permutations for a sequence of n goods.

G1

GN

A

GN

G1

N N!

Figure 5: n Good Model

This tree has the following statistics.

• The n goods have n! permutations and therefore this tree has n! leaves.

• The number of edges in the tree can be computed as

edges = n+ n(n− 1) + n(n− 1)(n− 2) + . . . (30)

=
n−1∑
i=0

(
i∏

j=0

(n− j)

)
(31)

• There are 2
(
n
2

)
+ n unique parameters representing fractions fi,j. Here the final term captures the

fraction of the audience that wants to purchase each good first i.e. fractions f0,j.
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If the graph of the n Good Model is collapsed as we collapsed the graph of the Two Good Model the result
is n graphs of the form below each with n! weighted edges from the audience to a good Gl for l ∈ [1, . . . , n].

GlA n!

Figure 6: Collapsed n Goods Model

Each of these n! edges is weighted by the product of between 1 and n terms of the form fx,y(1 − pj)
depending on where in the permutation Gl is and each of these weighted edges is multiplied by pl the price
of good Gl giving equation for calculating the profit of good Gl along the kth edge the form,

gl,k(pj, . . . , pk) = fx,y(1− pj)fq,r(1− pl) · · · fw,z(1− pk)pl (32)

Therefore the equation for the total profit takes the form

profit = f(p1, . . . , pn) =
n∑
l=1

gl(p1, . . . , pn) =
n∑
l=1

n!∑
k=1

gl,k(pj, . . . , pk) (33)

Taking the second partial derivatives of gl,k(p1, . . . , pn) gives

∂2

∂p2
l

gl,k(pj, . . . , pk) = −2fx,y(1− pj) · · · fu,v(1− pl−1)fq,rfe,o(1− pl+1) · · · fw,z(1− pk) (34)

∂2

∂pi∂pj
gl(pj, . . . , pk) = 0 for i 6= l (35)

∂2

∂pl∂pj
gl,k(pj, . . . , pk) = −fx,yfq,r(1− 2pl) · · · fw,z(1− pk) (36)

To simplify notation lets define this second partial derivatives of gl(pj, . . . , pk) and gl,k(pj, . . . , pk) as

g′′l,k(l, j) :=
∂2

∂pl∂pj
gl,k(pj, . . . , pk) (37)

g′′l (l, j) :=
∂2

∂pl∂pj
gl(pj, . . . , pk) (38)

where l, j ∈ [1, . . . , n]. It follows from the sum rule for derivatives that

g′′l (l, j) =
n!∑
k=1

g′′l,k(l, j) (39)

Notice that the functions g′′l (l, j) are the l, j entries of the Hessian matrix for the profit function g(p1, . . . , pn)
such that

Hg(p1, . . . , pn) =


g′′1(1, 1) g′′1(1, 2) . . . g′′1(1, n)
g′′2(2, 1) g′′2(2, 2) . . . g′′2(2, n)

...
... . . .

...
g′′n(n, 1) g′′n(n, 2) . . . g′′n(n, n)

 (40)
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Which in theory could be computed for given a set of prices and audience fraction parameters for an
arbitrary n. This Hessian matrix could then be used to determine if a critical point on the surface of the
normalized profit function g(p1, . . . , pn) is a local maxima.

The Profit Algorithm

Assume we can construct a tree Tn as shown in the n-Good Model with node set Tn and root node v0. Let
ki be a vector encoding the location of each node vki such that

ki = [1, 2, . . . , i− 1, i] (41)

and the F be a hashmap of factors for each non-root node where Fki = fki is the factor corresponding to
node vki . Finally let pi = pi for i ∈ [1, . . . , n] where pi is the price of good i.

profit = 0
for vki ∈ Tn\{v0} do

c = 1
for j ∈ ki do

c = c(1− pj)Fkj

end for
profit = cpi

end for
return profit

Using stochastic gradient ascent (SGA) to optimize the Two Good Model with the parameters f1, f2, f3, f4

given and computing the gradient of profit using the algorithm above as a function of the prices p. The
SGA algorithm initiates all prices to 1/2, the learning rate is ν = 0.01, and it iterates 1000 times, resulting
in profit = 0.34302 for x = 0.434, y = 0.446 which is the same to the hundredths place as the local max-
ima of g(x, y) found above. Perhaps this algorithm would perform a bit better with an adaptive learning
rate.

Results for the n Good Profit Equation

The SGA optimization algorithm can be used to optimize larger sets of goods and is limited only by the
difficulty of computing the profit over the n! permutations of the goods. This difficulty can be mitigated
if its assumed most these permutations do not occur. I think the number of permutations that are likely
to occur can be quantified using typical sets. But I have not done any pruning of the permutation space
here. If we assume the fractions of the audience who would like to purchase the n goods are defined as
follows.

f0,i = 2−i (42)

fi,i+1 =
9

10
for i > 0 (43)

fi,j =
1

100
for i > 0 and j 6= i+ 1 (44)

We can look at how the optimal prices vary with n as computed by the SGA in the table below where
the gradient is estimated using δ = 0.001, 1000 iterations, and ν = 0.01. This model assumes that almost
everyone purchases goods in order and the optimized pricing suggests its best to make most of the profit
on the first good purchased and make less profit on the remaining goods which might be purchased. The
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n p∗1 p∗2 p∗3 p∗4 p∗5 p∗6 g(p1, . . . pn) p∗ g(p∗) g(p∗1, . . . p
∗
n)/g(p∗)

1 0.500 0.1250 0.500 0.1250 1.000
2 0.617 0.183 0.2700 0.451 0.2472 1.092
3 0.605 0.274 0.220 0.3796 0.413 0.3437 1.104
4 0.593 0.293 0.239 0.313 0.4572 0.368 0.4162 1.100
5 0.569 0.301 0.254 0.294 0.375 0.5109 0.341 0.4700 1.087
6 0.556 0.319 0.260 0.298 0.356 0.427 0.5456 0.334 0.5100 1.070

Table 1

apparent reduction in the advantage of letting prices vary independently as n increases actually appears
to be a function of the number of SGA iterations being fixed and difficulty of the optimization problem
increasing with n.

Pruning Permutations

Consider the following tree which generates all permutations of {1, 2, 3} prepended with a 0. Lets call this
tree the source X. Let Xi be the ith permutation generated by X and Yj the jth value in a permutation
sometimes specified as Yi,j if it is required to indicate that its the jth value of the ith permutation. The
fractions in this tree were chosen independently at random according to the following distributions.

Pr(f0,j =
1

3
) = 1, P r(f0,j =

1

6
) = 0; Pr(fi,j =

1

3
) =

1

3
, P r(fi,j =

1

6
) =

2

3
(45)
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Figure 7: Source X

The probabilities of Yj taking on a value in a message Xi from X is given in the table below.
Examining the table above its clear that the distribution of Yj is not equal to the distribution of Yj−1,
therefore Yj is not a stationary stochastic process. Additionally examining the source notice that P (Y3 =
3|Y2 = 2) may equal 1

6
or 0, therefore Yj is not a Markov process.
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Y0 Y1 Y2 Y3

P (Y0 = 0) = 1 P (Y1 = 0) = 0 P (Y2 = 0) = 0 P (Y3 = 0) = 0
P (Y0 = 1) = 0 P (Y1 = 1) = 1

3
P (Y2 = 1) = 2

9
P (Y3 = 1) = 1

36

P (Y0 = 2) = 0 P (Y1 = 2) = 1
3

P (Y2 = 2) = 1
9

P (Y3 = 2) = 1
36

P (Y0 = 3) = 0 P (Y1 = 3) = 1
3

P (Y2 = 3) = 2
9

P (Y3 = 3) = 1
27

P (Y0 = ∅) = 0 P (Y1 = ∅) = 0 P (Y2 = ∅) = 4
9

P (Y3 = ∅) = 49
54

Table 2

However if we consider the source X producing messages Xi the situation is very different. Each message
Xi is independent and identically distributed according to distributions Yj for j ∈ [0, . . . , n]. Denoting the
distribution of Xi explicitly as FXi its also clear that the source X is strictly stationary since,

FXi = FXi+τ for all i, τ ∈ N (46)

Before continuing its necessary to define the convergence of a sequence of random variables X1,X2, . . . to a
random variable X in probability if for every ε > 0, Pr{|Xn−X| > ε} → 0. Given the notion of convergence
in probability the Asymptotic Equipartition Property (AEP) Theorem (Cover Thm. 3.1.1) can be stated
as

− 1

n
log p(X1,X2, . . . ,Xn)→prob. H(X) (47)

where H(X) is the entropy of X.

Cover also defines a typical set A
(n)
ε for a sequence (X1,X2, . . . ,Xn) ∈ X n with the property

2−n(H(X)+ε) ≤ Pr(X1,X2, . . . ,Xn) ≤ 2−n(H(X)−ε) (48)

In Thm 3.1.2 Cover states that the typical set A
(n)
ε has among others the following properties

Pr{A(n)
ε } > 1− ε for n sufficiently large. (49)

|A(n)
ε | ≤ 2n(H(X)+ε) (50)

|A(n)
ε | ≥ (1− ε)2n(H(X)−ε) for n sufficiently large. (51)

Given our definition of the source X and the messages it produces satisfying the AEP property it follows
that if X produces sequences of length m the number of these typical sequences is less than 2m(H(X)+ε).

Now unfortunately this does not tell us the number of unique permutations Xi in the length m sequences
that make up the typical set A

(m)
ε . Clearly its ≤ m2m(H(X)+ε) but its not clear this is a tight enough bound

to be useful. Especially given that there is no necessary relation between n the number of elements in the
permutation Xi and m the length of permutation sequences. So perhaps we are at a dead end here and
may need to take a different approach.

First notice that the random variables Yj for the jth element in a permutation follow a categorical distri-
bution and thus if one has access to that distribution permutations can be sampled directly. This while
interesting is not useful if finding the parameters of the categorical distribution requires generating every
permutation? Probably not.

Say instead we set a threshold and say we want to compute the profit on any branch upto and including
those with at least α = 1

54
probability. How does this effect the source X
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Figure 8: Truncated Source X

Unfortunately picking such a large α results in little pruning of such a small tree. Nor does setting
threshold α give us how confident we should be that we captured β% of permutations in way that two
standard deviations is guaranteed by the Chebyshev inequality to capture 75% of observations. However
if we sum the probability at each root of the sub-trees pruned from the truncated source we have the
probability any message in the original source cannot be reproduced on the truncated source. To get at
this quantity lets call V the set of node in the source tree X and v a node in this set. Additionally lets
call m a message from source X where m is a vector of nodes v ∈ V and denote the roots of the sub-trees
in the source X but not in the truncated source X̂ as set R. R is the set of pruned sub-tree roots.

β =
∑
v∈V

1 {v ∈ R}Pr(v ∈ m) (52)

The probability that a message m produced by source X cannot the reproduced by X̂ is equal to β since
β is the probability that a message m terminates at a node in X but not in X̂. In the tree above β = 1

36

so the truncated source X̂ correctly reproduces 35
36

of the messages sent by source X. (Note this is different

from the fraction of the profit captured by X̂ verse X.)

The figures below show how prices and the number of nodes vary as a function of the threshold α. The
parameters used in the optimization are the same as those used to generate the results in Table 1.
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Figure 9: Optimized price g(p∗1, . . . , p
∗
n) as a function of α for n = 6.
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Figure 10: Nodes explored as a function of α for n = 6.
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Figure 11: Optimized price g(p∗1, . . . , p
∗
n) as a function of nodes explored for n = 6

The actual results are given in Table 3 below. The takeaway is that one can reduce the number of nodes
explored by at least a factor of 10 and still get close to the optimal price if all tree nodes are explored.

α profit nodes explored
0.0 0.545 1956
0.00025 0.545 107
0.0005 0.546 87
0.00075 0.543 72
0.001 0.544 68
0.0025 0.541 45
0.005 0.538 25
0.0075 0.534 21
0.01 0.536 21
0.025 0.531 20
0.05 0.515 18
0.075 0.478 15
0.1 0.469 14
0.25 0.332 7
0.5 0.125 1
0.75 0 0

Table 3

To construct a truncated source with a target βt set α large and iteratively decrease α by ε until the
difference between β of the truncated source and the target is acceptably small, |β − βt| < δ.
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Next lets try to get a handle on the number of truncated permutations that exist for a given α without
having to enumerate them. Let f = [fv] be a vector containing the sum of the fraction weights leaving any
node. So fr = 3(1

3
) = 1 the this sum for the root node. Define the following indicator function as

g(i, α, f) = 1

{
i∏

j=1

fj ≥ α

}
(53)

and

c(α, f) =
n∑
i=1

g(i, α, f) (54)

Also lets use f− to denote that the vectors elements are in decreasing order and f+ to denote that its
elements are in increasing order.

An upper bound on the number of permutations ρ in the truncated tree can be given as

ρ ≤
c(α,f−)−1∏

k=0

(n− k) (55)

And a lower bound on the number of permutations in the truncated tree can be given as

ρ ≥
c(α,f+)−1∏

k=0

(n− k) (56)

The expected number or permutations takes additional work. Instead of considering the actual edge
weights fi,j consider the random variables fi,j representing the probabilities of those weights taking on
specific values in our construction of the source. Since each permutation is prepended with a zero node
representing the pool of people who may buy a good, E[f0,j] is likely different from E[fi,j] and in fact is
different in our constructions. So we will define the two expectations separately as follows

f̄0 = E[f0,j] =
∑
f

fPr(f0,j = f) (57)

f̄1+ = E[fi,j] =
∑
f

fPr(fi,j = f) (58)

and letting f̄ = [f̄0, f̄1+] the intermediate functions can be defined as

g(i, α, f̄) = 1
{
f̄0(f̄1)i−1 ≥ α

}
(59)

and

c(α, f̄) =
n∑
i=1

g(i, α, f̄) (60)

Therefore it follows that

E[ρ] =

c(α,f̄)−1∏
k=0

(n− k) (61)

Now there is a caveat with this expectation. Equation (59) can be a reduced to a product of expectations
because we chose the values of the random variables f0,j and fi,j independently. This is not generally the
case for sources and if it is not the case equation (61) is only an approximation of the expectation and an
unbounded one at that. So the best one can do is upper and lower bound the number of permutations in
the truncated source.
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To test these bounds lets construct a larger permutation tree than the one above. For n = 6 lets choose
the fractions according to the following distribution

Pr(f0,j =
1

6
) = 1, P r(f0,j =

1

12
) = 0; Pr(fi,j =

1

6
) =

1

6
, P r(fi,j =

1

12
) =

5

6
(62)

Clearly f̄ = [1
6
, 7

72
]. Sweeping α generates the following figure,
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Figure 12

This figure could be improved by generating an expectation and standard deviation of the actual number
of permutations via Monte Carlo simulation. Nonetheless even for the single trial shown the bounds and
expectation seem correct.
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Final Thoughts

I have been doing a bit of reading to understand what the literature on this problem is. I found the
following paper which solves the same problem under the constraint of having a discrete set of prices.
Still they show their algorithm can scale to thousands of products and while in theory so could the above
algorithm I’m not sure how effective the optimization would be in that case.
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